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Energy-Momentum Complex in M011er's 
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MNler's tetrad theory of gravitation is examined with regard to the energy- 
momentum complex. The energy-momentum complex as well as the superpoten- 
tial associated with Moller's theory are derived. Mr field equations are 
solved in the case of spherical symmetry. Two different solutions, giving rise to 
the same metric, are obtained. The energy associated with one solution is found 
to be twice the energy associated with the other. Some suggestions to get out of 
this inconsistency are discussed at the end of the paper. 

1. I N T R O D U C T I O N  

The problem of defining an energy-momentum complex describing the 
energy contents of physical systems in general relativity (GR)  has been 
tackled by several authors  (Einstein, 1916; Bergmann and Thomson,  1953; 
Goldberg,  1958). M011er (1958, 1961a, b) pointed out that  all expressions 
proposed previously for this quanti ty have some defects. He specified some 
properties that  need to be satisfied. Mr (1961b) has shown that it is not  
possible to get an expression with these specifications using Riemannian 
space. Instead, he suggested using tetrad space. In fact, he was able to 
derive an expression for the energy-momentum complex, possessing the 
properties ment ioned before, in tetrad space. 
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The Lagrangian function from which the field equations of GR are 
derived is invariant under local tetrad rotation. Thus the field equations do 
not fix the field variables completely, leaving undefined six free functions. 
As a consequence, many different tetrad structures may give rise to the same 
metric specifying the gravitational field. And since the energy-momentum 
complex suggested by Mr is not invariant under local tetrad rotation, 
a certain metric which is supposed to represent a single definite physical 
system may be associated with more than one quantity expressing its 
energy and momentum contents. Thus the problem was not solved 
completely by the proposed expression mentioned above. Mr (1961b) 
suggested that the field equations of GR have to be modified in order not 
to allow such redundancy in solutions. 

Mr (1978) modified GR by constructing a new field theory in the 
tetrad space. The field equations in this new theory were derived from a 
Lagrangian which is no t  invariant under local tetrad rotation. This theory 
has gained considerable attention (Sfiez, 1983, 1984, 1985; Sfiez and de Juan, 
1984; Meyer, 1982). The purpose of the present work is to examine this 
theory with regard to the energy-momentum complex proposed by Mr 
(1961b). In Section2 we will review briefly Mr tetrad theory of 
gravitation. The energy-momentum complex associated with Mr 
theory is derived in Section 3. The structure of tetrad spaces with spherical 
symmetry is reviewed in Section 4. Two solutions of Mr field equa- 
tions are obtained in Section 5, using the tetrad of Section 4. A comparison 
between the two solutions is given in Section 6. In Section 7 the energy 
contents associated with each solution are evaluated. The results are 
discussed and concluded in Section 8. 

Due to the lengthy and tedious calculations of the present work, the 
computer algebra system REDUCE 3.3 was used. Copies of the programs used 
are available? 

2. MOLLER'S TETRAD THEORY OF GRAVITATION 

Mr (1978) constructed a gravitational theory using the tetrad 
space for its structure. His aim was to get a theory free from singularities 
while retaining the principle merits of GR as far as possible. In his theory 
the field variables are the 16 tetrad components hU. 6 

i 

5Please contact A.H. e-mail: hindawi@egfrcuvx.bitnet 
6In the following we use Latin indices (ijk...) to represent the vector numbers,  and Greek 
indices (# re . . . )  to represent the vector components.  All indices run from 0 to 3. 
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The metric is a derived quantity, given by 

gU~ d~f h~h~ (2.1) 
i i 

We assume imaginary values for the vector h ~ in order for the above metric 
o 

to have a Lorentz signature. A central role in M011er's theory is played by 
the tensor 

where the semicolon denotes covariant differentiation using the Christoffel 
symbols. Moller (1978) considered the Lagrangian L to be an invariant 
constructed from yu~ and g.~. As he pointed out, the simplest possible 
independent expressions are 

L(~) def (I)#(ID/~ L(2) clef ~ w',~ L(3) def Gv~ = = ~.,,o7 , = 7.v~7 (2.3) 

where (I), is the basic vector defined by 

O~ ~f 7~u~. (2.4) 

These expressions L (i) in (2.3) are homogeneous quadratic functions in the 
first-order derivatives of the tetrad field components. 

Moiler considered the simplest case, in which the Lagrangian L is a 
linear combination of the quantities L (~ i.e., the Lagrangian density is 
given by 

~ M o l l e r  d el ( _ g ) l / 2  (~1L(1) + ~2L(2) + 0~3L(3)) (2.5) 

where 

g aej det(g~v) (2.6) 

Here, M011er (1978) chooses the constants cq such that his theory 
gives the same results as GR in the linear approximation of weak fields. 
According to his calculations, one can easily see that if we choose 

~1 = - - 1 ,  ~2 = ~, ~3 = 1 -- 22 (2.7) 

with 2 equal to a free dimensionless parameter of order unity, the theory 
will be in agreement with GR to the first order of approximation. For  
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= 0, Mr theory is identical with Einstein's theory, but for 2 =~ 0 the 
field equations take the following formT: 

G~ + H.v = - x T ~  (2.8) 

F , ~ = 0  (2.9) 

where 

n uv 

and 

aef= 2 1 y ~ 7 ~  + 7~7,.~ ~ + 7~,~ 7~, ~ + gu~(7~7~n ~ -- ~'~:~/7,r/1 ~,ac,6o-3q)j (2.10) 

v,~ ~s .~[@~.. - ~ . ,  - @~(7% - ?L~) + 7,~% ] (2.11) 

Equations (2.9) are independent of the free parameter 2. On the other 
hand, the term H ~  by which equations (2.8) deviate from Einstein's field 
equations increases with 2, which can be taken of order unity without 
destroying the first-order agreement with Einstein's theory in the case of 
weak fields. 

3. ENERGY-MOMENTUM COMPLEX FOR MOLLER'S THEORY 

Mr (1961b) was able to find a general expression for an energy- 
momentum complex j / /v that possesses all the required satisfactory proper- 
ties, and formed its superpotential ~ ' 7  using the method of infinitesimal 
transformations, 

where 

and 

v vc~ ~/=o_~ (_g)1/2 ( r / +  t~ ) = % ,= 

, ' de f l I~Sh=__  _ a v ~  o] (_g) , /2  t,~ = ~ ~h, ~,' ,. 

(3.1) 

(3.2) 

= 4-~LOh~= , -c~h-% h = (3.3) 

where ~ is the Lagrangian of the theory under consideration. 

7Obviqusly G~ denotes the Einstein tensor, T~v denotes the material-energy tensor, and x is 
the constant  of GR, which equals 8n in relativistic units. 
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For Mr Lagrangian, as given by (2.5), the superpotential (3.3) 
can be written in the form 

( _ _ g ) 1 / 2  (1)  (2)  (3)  

%v~__ 4K [% U"~ + % Uff~ + ~3 U j ]  (3.4) 

O )  (2) (3)  

where U Z ,  U, ~, Uu ~ correspond to L ~ L (2), L (3), respectively. 
To evaluate the superpotential we have first (see Appendix A in 

Meller, 1961b) 

- ~ 7 - ~ ,  7" (3.5) 

where pa.,,pGT is a tensor of the form 

d e f  p o-z a o-r 

and g~,~r is the tensor 

g~v~ d e f  ~r r a x = c~. ~. - ~  g~ 

Thus we get 

Finally, we get 

Similarly we can write 

OL (~) , 9  
_ g~B ~ . . 9 ~  ~ 

8h" ~ 

8 
= 2 ~  ~ - -  O~ 

8 h * '  ,~ 

= 2 c ~ h  ~ ~ h~.p 
./ oh"~ ~ ' 

i ' 

: 29  " ~ J 

= - -  gO ~ g & P ~ P ~ h  p 
t 

i1) ~.~aaOL(~) h v ~LI l )h~  
1.1 ~ - -  _ 

(2) 

U S  ~ = - 27~g~,~ P ~ j ~  
(3)  

U , v~ = _ 27/~g.~ p ~ ' " ~  

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.1oi 

(3.11) 
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The final expression for the superpotential for Mr theory can be 
obtained by substituting from (3.9)-(3.11) and using the values of the 
parameters el ,  c~2, ct3 given in Section 2 in (3.4), to get 

( _ _ g ) 1 / 2  D vVO-Fo~,~/7~. ~ n  L.~ ~ ~,~ -- ; t g ~ 7 ~  -- ( 1 -  22) g~; jn~]  (3.12) 
q / J~=  2~ 

4. SPHERICALLY S Y M M E T R I C  TETRAD SPACES 

The structure of tetrad spaces with spherical symmetry has been 
studied by Robertson (1932). The four tetrad vectors defining such 
structure, as given by Robertson, can be written as 

h ~ = A 
0 

h ~ = D X  ~ 
0 (4.1) 
h o = E X  ~ 
a 

h b = F X ~ X  b + 6 a b B  + a a b c S X '  
a 

where A, B, D, E, F, and S are functions of r = ( x a x a )  1 /2  and a, b, c run 
from 1 to 3. 

Robertson has shown that: 

1. Improper  rotations are admitted if and only if S = 0. In this case the 
tetrad (4.1) takes the form 

h ~  
0 

h a = D X  a 

0 (4.2) 
h ~ = E X  a 
a 

h b = F X a X  b + ~ b B  
a 

2. The functions E and F can be eliminated by mere coordinate 
transformations, leaving the tetrad in the simpler form 

h ~ = A 
0 

h a = D X  a (4.3) 
0 

h b = 6abB 
a 
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Three important  remarks are reported here: 

1. The tetrad used by Mr (1978) in application of his theory is a 
special case of the above tetrad (4.3), in which the function D is taken to 
be zero. Thus one may expect to obtain more solutions when using the 
more general tetrad (4.3). 

2. Since one has to take the vector h v to be imaginary, in order to 
0 

preserve the Lorentz signature for the metric, the functions A and D have 
to be taken as imaginary. 

3. It is more convenient, for the sake of computations, to use the 
tetrad (4.3) in spherical polar coordinates, where it takes the form s 

[A D r  0 0 \ 

0 Bs in0cos~b B Bsinq~ 
- cos 0 cos 
r r sin 0 

B cos ~b B 
0 B s i n 0 s i n r  - c o s 0 s i n ~ b  

r 

B 
0 B cos 0 -- -- sin 0 

r 

h ~t 

i 

r sin 0 

0 / 

(4.4) 

5. S O L U T I O N S  OF M O L L E R ' S  F I E L D  E Q U A T I O N S  

Using the tetrad (4.4) to solve Mr field equations (2.8) and (2.9), 
we find that equation (2.9) is satisfied identically, and also that Hu~. as 
given by (2.10) vanishes identically. Thus for spherically symmetric exterior 
solutions, Mr field equations are reduced to Einstein's field equations 
of GR, namely 

G~v=0 (5.1) 

The Einstein tensor G~v may be evaluated using the Riemannian metric 
derived from (4.4) via the relation (2.1). It is easy to get 

B 2 + D2r 2 D r  1 

goo A 2 B  2 , glo = go1 - A B  2, g l l  - B 2 

r 2 r 2 sin 2 0 
g22 B 2 , g33 B 2 

8In matrix notation, the element h ~ is in the ith row and the/~th column. 
i 

(5.2) 
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The corresponding field equat ions (5.1) give rise to 
differential equations:  

1 
Goo - r A 2 B  4 { [ ( 3 0  2 + 8B '2) D - 2(2DB" + B ' D ' )  B]  r3B2D 

- [2(DB" + B ' O ' )  B - 5DB '2 ] rSD 3 - (2BB"  -- 3D 2 - 3B '2) rB  4 

+ 2 (BD '  -- 4 D B ' )  r4BD 3 + 2 (BD'  - 6 D B ' )  r2B3D - -  4BSB ' } = 0 

the following set of 

(5.3) 

D 
r D + ( 2 B  3D 2 3B '2) rB 2 G m -  A B  4 { [2(DB" + B ' D ' )  B - -  5DB '2] 3 O" - -  - -  

- 2 (BD '  - 4 D B ' )  r2BD + 4B3B ' } = 0 (5.4) 

1 
Gll  = rAB4  { [(3D 2 + B '2) A + 2 B A ' B ' ]  rB 2 

- [2(DB" + B ' D ' )  B -  5DB '2] r3AD 

+ 2 (BD'  - 4 D B ' )  r 2 A B D  - 2 A B 3 B  ' - 2B4A ' } = 0 (5.5) 

r 

G 2 2 -  A2B4 [ { [ ( D A "  + 3 A ' D ' ) B - 3 D A ' B ' ]  A B D  

+ [(2DB" + 5B 'D ' )  B D  - ( D D " +  D '2) B 2 - 5D2B '2 ] A 2 _ 2B2D2A,2 } r 3 

+ [ (BB"  - 3D2B '2) A 2 + A B Z A  " - 2 B " A  '2 ] rB  2 

- 2 [ (3BD'  -- 4 D B ' )  A - 2 B D A ' ]  r Z A B D  + A 2 B 3 B  ' + A B 4 A ' ) ]  = 0 (5.6) 

r sin 2 0 
G 3 3 -  A2B4 x [ ( { [ ( D A " + 3 A ' D ' ) B - 3 D A ' B ' ]  A B D  

+ [ ( 2 D B " +  5 B ' D ' ) B D -  ( D D " + D ' 2 ) B  2 - 5D2B '2] A 2 - 2B2D2A '2} r 3 

+ [ (BB"  - 3D2B '2) A 2 + A B Z A  " - 2B"A '2) rB  2 

- 2 [ (3BD'  - 4 D B ' )  A -- 2 B D A ' ]  rZABD + A 2 B 3 B  ' + A B a A ' ) ]  = 0 (5.7) 

where the primes refers to differentiation with respect to r. 
The trivial flat space-time solution for such equat ions is obtained by 

taking 
A = i ,  B = I ,  D = 0  (5.8) 

A f r s t  nontrivial  solution can be obtained by taking D = 0 and solving for 
A and B. In fact, this is the case studied by MNler  (1978), where he 
obtained the solution 

1 + m/2r  1 
A = i -  B =  (5.9) 

1 - m / 2 r '  (1 + m/2r )  2 
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Hence, we get from (4.3) directly the tetrad (in Cartesian coordinates) 

h ~ = i 1 + m/2r  
o 1 - m/2r  

h i =  h 2 = h 3 - 
1 2 3 

1 

(1 + m/2r )  2 

(5.10) 

with the associated Riemannian metric 

ds2= (1-m/2r)2 ( m )  4 
( l + m / 2 r )  2 d t 2 +  l+~rr  ( d X 2 + d y 2 + d Z 2 )  (5.11) 

i.e., the Schwarzschild metric in its isotropic form. 
A second nontrivial solution can be obtained by taking A = i, B = 1, 

and D r 0 and solving for D. In this case the resulting field equations can 
be integrated directly to give 

(2 n'/'~ 1/2 
O = i \  r3 ] (5.12) 

Hence, we get from (4.3) the following tetrad (in Cartesian coordinates): 

h ~  i 0 

h a = i ( 2 m ~ l / 2 x a  (5.13) 
o \ 7 ; J  

h b = da b 
a 

where a and b run from 1 to 3. The metric associated with the above tetrad 
is 

ds 2 = - 1 -- dt 2 - 2 \ - ~ /  X dt d X  - 2 \ r3 j Y dt d Y  

{2rn~ 1/2 
- - 2 \ r 3 ]  Z d t d Z + d X 2 + d y a + d Z  2 (5.14) 

A simpler form for the above metric can be obtained if it is written in polar 
coordinates. Substituting directly in (4.4) for the value of D as given by 
(5.12), we get the tetrad (in polar coordinates) 
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cos r cos 0 

r 
h " =  

cos 0 sin r 

r 

sin 0 

r 

with the assocaated Riemannian metric 

/i i (2 -~ )  1/2 

0 cos r sin 0 

0 sin r sin 0 

0 cos 0 

sin r 

r sin 0 

COS q~ 

r sin 0 

(5.15) 

ds 2 = - ( 1  - 2 m / r )  dt  2 - 2 ( 2 m / r )  1/2 d t  dr  + dr 2 + r 2 dO 2 -}- r 2 sin 2 0 de 2 (5.16) 

It is to be noted here that m in the metric (5.16) is a mere constant of 
integration. It will be shown in the next section that m indeed plays the role 
of the mass producing the field, and thus justifies the use of its name. 

6. C O M P A R I S O N  OF T H E  T W O  S O L U T I O N S  

Our aim in this section is to compare the two different solutions 
obtained in Section 5 for Mr field equations. The first step is to 
eliminate the cross term appearing in the metric (5.16) of the second solu- 
tion. This can be easily done by performing the coordinate transformation 

f - -  iDr  
t - + t +  ( l _ D 2 r 2 )  dr  (6.1) 

and keeping the spatial coordinates unchanged. One gets the transformed 
tetrad in the form 

i 
h O - _ _  
o 1 - 2 m / r  

[2m~ 1/2 cos r sin 0 
h o 
1 = " \ 7 }  " T ----2~-/r ' 

cos r cos 0, h 2 
1 f 

 o_(2 )   sin sin0 
2 - -  

cos 0 sin r h 2 
2 r 

h 1 = COS O, 
3 

h 1 = cos r sin 0 
1 

h3 = sin r 
1 r sin 0 

h 1 = sin r sin 0 
2 

h3 = cos 0 
2 I --  2 m / r  

sin 0 h z - 
3 r 

(6.2) 
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The metric associated with the above tetrad can be computed  either 
directly from the tetrad or  by applying the same coordinate  t ransformat ion 
(6.1) to the metric (5.16). In both  cases we get 

ds 2 = - (1 - 2m/r  ) dt 2 + ( 1 - 2m/r )  - 1 dr 2 + r 2 dO 2 + r 2 sin 2 0 &b 2 (6.3) 

1.e., the Schwarzschild metric in its s tandard form, in which m, the constant  
of integration, plays the role of the mass of the source of the field. 

N o w  to be able to compare  the two solutions (5.10) and (6.2), we 
transform the second one (6.2) to a coordinate  system such that its 
Riemannian metric takes the isotropic form in Cartesian coordinates,  i.e., 
the same coordinates of  the first solution (6.2). The first coordinate  trans- 
format ion (Eddington,  1921, p. 93) is 

r - + r  1 +  (6.4) 

Applying this coordinate  t ransformat ion yields the following tetrad: 

�9 (1 + m/2r )  2 
h ~  t 
o (1 -- m/2r )  2' 

2(rn/2r) 1/2 
h l = i  
o (1 -- m/2r)(1  + m/2r )  2 

//m'~ 1/2 (1 + rn/2r) cos ~b sin 0 
h o 2 
1 \ 2 r J  (1 - m/Zr)  2 ' 

/ ! 

cos ~b sin 0 h i =  
1 (1 - m/Zr)(1  + m/2r )  

cos ~ cos 0 h 2 - 
1 r(1 + m/2r )  2' 

sin ~b 
h 3 - -  

1 r sin 0(1 -- m/2r )  2 

( m ~  1/2 (1 + m / Z r ) s i n  ~b sin 0 
h ~  2 \ ~ /  (1 - m / Z r )  2 ' 

hi = sin ~b sin 0 
2 (1 + m / 2 r ) ( 1  - - m / 2 r )  

cos 0 sin ~b h 2 - 
2 r(1 + m/2r )  2' 
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h3= 
2 

cos ~b 
r sin 0(1 + m/2r)  2 

( m ~ 1/2 (1 + m/2r ) cos 0 
h ~  {]-7~--7-2r-- ~- , 

h i =  
3 

cos 0 

( l + m / 2 r ) ( 1 - m / 2 r )  

sin 0 
h 3 = (6.5) 
3 r( 1 4- m/2r)  2 

The metric associated with the tetrad (6.5) is 

ds2= ( 1 - m / 2 r ) 2  ( m )  4 
( l + m / 2 r ) 2  d t2+ l + ~ r  ( d r 2 + r 2 d O 2 + r 2 s i n 2 O d O  2) (6.6) 

The last step is 
(6.6), into Cartesian 

to transform the tetrad (6.5), along with its metric 
coordinates, 

h ~  
0 

( l + m / 2 r )  2 

( 1 - m / 2 r )  2' 

2 ( m / 2 r ) l / z x  
h l = i  
o r(1 - m/2r)(1 + m/2r) 2 

h 2 = i 2(m/2r)l/2 Y 
o r ( 1 - m / 2 r ) ( 1  + m / 2 r )  2' 

h 3 = i 2 (m/2r ) l / 2Z  
o r (1 - -m/2r ) (1  + m / 2 r )  2 

hO = 2(2m/r)  1/2 (1 + m / 2 r )  X 

1 ( 1 - - m / 2 r )  2 r ' 

h l = ( 1 - m / 2 r )  r 2 + 2X2(m/2r)  

1 (1 + m/2r) 2 (1 - m/2r)  r 2 

h2 = 2 X Y ( m / 2 r )  
1 (1 + m/2r) 2 (1 - m/2r)  r 2' 

h3 _ 2 X Z ( m / 2 r )  
1 (1 + m / 2 r )  2 ( 1 - - m / 2 r )  r 2 

hO 2(2m/r)  1/2 ( l + m / 2 r )  Y 

2 ( 1 - - m / 2 r )  2 r ' 
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hi = 2 X Y ( m / 2 r )  
2 (1 + rn/2r) 2 (1 - m / 2 r )  r 2 

h2 = (1 - m/2r)  r 2 + 2 y2(m/2r )  

2 (1 + rn/2r) 2 (1 -- m/2r)  r 2 ' 

h 3  _ 2 Y Z ( m / 2 r )  
2 (1 + m/2r)  2 (1 - m / 2 r )  r 2 

hO _ 2(2m/r)  a/2 (1 + m / 2 r )  Z 

h I _ 
3 (1 

h 2 _ 

3 ( 1  

(1 - m/2r)  2 r 

2 X Z ( m / 2 r )  

+ m/2r)  2 (1 - m/2r)  r 2 

2 Y Z ( m / 2 r )  

+ m/2r) 2 (1 - m/2r)  r 2' 

h3 (1 - m / 2 r )  r 2 + 2Z2(m/2r)  

3 - (1 + m / 2 r )  2 (1 - m / 2 r )  r 2 (6.7) 

The metric derived from the above tetrad (6.7) is now identical with the 
metric derived from the first solution (5.11), namely 

( 1 - m / 2 r ) 2  ( m )  4 
ds 2 -  ( l + m / 2 r ) 2 d t 2 +  l + ~ r  r ( d X 2 + d y 2 + d g  2) (6.8) 

Thus we have two exact solutions of MOiler field equations, each of 
which leads to the same metric, the Schwarzschild metric in its isotropic 
form in Cartesian coordinates. We notice that the second solution (6.7) is 
of the form of the original Robertson tetrad (4.2). This should be expected, 
since tlae coordinate transformations we have performed on the second 
solution reproduce the functions E and F, eliminated before by coordinate 
transformation. Hence, we can put these two solutions into a concise form, 
as shown in Table I. 

The important result obtained in this section is that we have been 
able to derive two different solutions for Mr field equations; the 
Riemannian metrics associated with these two solutions are identical, 
namely the Schwarzschild metric in its isotropic form. Since Mr 
theory is a pure gravitational theory, the above two solutions have to be 
equivalent in the sense that they describe the same physical situation, a 
static, spherically symmetric gravitational field with a source of mass m. In 
what follows we examine the equivalence of these solutions by calculating 
the energy associated with each of them, using the superpotential derived 
for Mr theory in Section 3. 
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Table I. Comparison of the Two Solutions 

Function First solution (5.10) Second solution (6.7) 

.1 + m/2r , (1 + m/2r) 2 
A z 1 -- m/2r t (1 -- m/2r) 2 

1 1 
B 

(1 + m/2r) 2 (1 + m/2r) 2 

D 0 2 i ( m ~  lie 1 

r \ ~ r J  (1 +m/2r) z (1 

E 0 2(m 1,2 
/ N 

l + m/2r 

7\~j (1 - m/2r) 2 

2 m/2r 
F 0 

r (1 + m/2r) 2 (1 - m / 2 r )  

7. THE ENERGY ASSOCIATED WITH EACH SOLUTION 

Now we use the superpotential of Mr theory derived in Section 3 
to evaluate the energy associated with each of the two solutions given in 
Table I. The components of the superpotential that contribute to the total 
energy are ~//o ~ only. Thus, substituting from the first solution (5.10) into 
(3.12), we get the following nonvanishing value 

q/~176 = 4 X a m (  l ~ c r  2 --2r - ~ )  (7.1) 

The total energy is given by (Mr 1958) 

E = lim fr ~176 dS (7.2) 
r ~ c c  - -  c o n s t  

where na is a unit 3-vector normal to the surface elements dS. Substituting 
from (7.1) into (7.2), we get 

87zm 
E =  = m  (7.3) 

/s 

In nonrelativistic units, the above result appears as the mass of the source 
times the square of the speed of light. This is a very satisfactory result, and 
it should be expected. 



M011er's Tetrad Theory of Gravitation 1641 

Now let us turn our attention to the second tetrad (6.7). Computing 
the required components of the superpotential, we get 

8X" m 
q./0 ~ - (7.4) ,~'r 2 2r 

These lead to a total energy 

E =  2m (7.5) 

This is twice the gravitational mass! 

8. DISCUSSION AND CONCLUSION 

The energy-momentum complex for M011er's tetrad theory of gravita- 
tion is derived, using Mr Lagrangian. Two different exact solutions of 
Mr field equations are obtained for the case of spherical symmetry. 
The energy content of each solution is evaluated using the derived super- 
potential. It is shown that, although the two solutions give rise to the same 
Riemannian metric (the Schwarzschild metric), they give two different 
values for the energy content. This shows a certain inconsistency in 
Mr theory. 

The following suggestions may be considered to get out of this 
inconsistency: 

1. The energy-momentum complex suggested by Mr (1961b) is not 
quite adequate, though it has very satisfying properties. 

2. Many authors believe that a tetrad theory should describe more 
than a pure gravitational field. In fact, Mr (1961b) considered this 
possibility in his earlier trials to modify GR. In these theories, the most 
successful candidates for the description of the other physical phenomenon 
are the skew-symmetric tensors of the tetrad space, e.g., @,;v-~bv;~. The 
most striking remark here is that all the skew-symmetric tensors vanish for 
the first solution, but not all of  them do so for the second one. Some authors 
(e.g., Einstein, 1930; Mikhail and Wanas, 1977) believe that these tensors 
are related to the presence of an electromagnetic field. Others (e.g., Miiller- 
Hoissen and Nitsch, 1983) believe that these tensors are closely connected 
to the spin phenomenon. It is not clear that Mr theory deserves such 
a wider interpretation. This needs a lot of investigation before arriving at 
a concrete conclusion. 

3. The last possibility is that Moller's theory needs to be generalized 
rather than reinterpreted. There are already some generalizations of 
Mr theory. Mr himself considered this possibility at the end of his 
1978 paper by including terms in the Lagrangian other than the simple 
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quadrat ic  terms L ~i). SS.ez (1983) has generalized Moller ' s  theory in a very 
elegant and natura l  way into scalar tetradic theories of gravitat ion.  In  these 
theories the question is: D o  the field equat ions fix the tetradic geometry  in 
the case of spherical symmet ry?  This question was discussed at length by 
Sfiez (1986). The  results of the present  paper  can be considered as a first 
step to get a satisfactory answer to this question. Meyer  (1982) showed 
that  M~ller 's  theory is a special case of Poincar~ gauge theory  constructed 
by Hehl  et al. (1980). Thus  Poincar6 gauge theory can be considered as 
another  sat isfactory general izat ion of Moller 's  theory. 
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